Showing posts with label Pre-Training. Show all posts
Showing posts with label Pre-Training. Show all posts

Friday, February 09, 2024

Pre-Training vs Fine-tuning vs Context injection

Pre-Training:

Pre-training is a foundational step in the LLM training process, where the model gains a general understanding of language by exposure to vast amounts of text data.

  1. Foundational step in large language model (LLM) training process, where the model learns general language understanding from vast amounts of text data.
  2. Involves unsupervised learning and masked language modelling techniques, utilizing transformer architecture to capture relationships between words.
  3. Enables text generation, language translation, and sentiment analysis among other use cases.

Fine-Tuning:

Fine-tuning involves taking a pre-trained model and tweaking it for a specific task. This involves reconfiguring the model's architecture or changing its hyperparameters to improve its performance on a specific dataset.

  1. Follows pre-training and involves specializing the LLM for specific tasks or domains by training it on a smaller, specialized dataset.
  2. Utilizes transfer learning, task-specific data, and gradient-based optimization techniques.
  3. Enables text classification, question answering, and other task-specific applications.

In-Context Learning:

Context Learning involves injecting contextual information into a model during training, such as the option to choose from multiple models based on context. This can be useful in scenarios where the desired model is not available or cannot be learned from the data. 

  1. Involves guiding the model's behavior based on specific context provided within the interaction itself, without altering the model's parameters or training it on a specific dataset.
  2. Utilizes carefully designed prompts to guide the model's responses and offers more flexibility compared to fine-tuning.
  3. Enables dialogue systems and advanced text completion, providing more personalized responses in various applications.

Key Points:

  • Pre-training is the initial phase where LLMs gain general understanding of language from vast text data through unsupervised learning and masked language modelling.
  • Fine-tuning follows pre-training and focuses on making the LLM proficient in specific tasks or domains by training it on a smaller, specialized dataset using transfer learning and gradient-based optimization.
  • In-Context Learning involves guiding the model's responses based on specific context provided within the interaction itself using carefully designed prompts, offering more flexibility compared to fine-tuning.
  • Each approach has distinct characteristics, use cases, and implications for leveraging LLMs in various applications.

Saturday, February 03, 2024

Characteristics of LLM Pre-Training

The characteristics of LLM pre-training include the following:

  1. Unsupervised Learning: LLM pre-training involves unsupervised learning, where the model learns from the vast amounts of text data without explicit human-labeled supervision. This allows the model to capture general patterns and structures in the language.

  2. Masked Language Modeling: During pre-training, the model learns to predict masked or hidden words within sentences, which helps it understand the context and relationships between words in a sentence or document.

  3. Transformer Architecture Utilization: LLMs typically utilize transformer architecture, which allows them to capture long-range dependencies and relationships between words in the input text, making them effective in understanding and generating human language.

  4. General Language Understanding: Pre-training enables the LLM to gain a broad and general understanding of language, which forms the foundation for performing various natural language processing tasks such as text generation, language translation, sentiment analysis, and more.

These characteristics contribute to the ability of LLMs to understand and generate human language effectively across a wide range of applications and domains.